Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184326, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703804

RESUMEN

The mechanism of Amphotericin B at the membrane is still subject of debate, with the prevailing hypothesis being the formation of pores. The activity of these pores is influenced by various factors. Recently aggregation in solution and insertion in the membrane had been highlighted as crucial for action of the drug Here we investigated the effect of applied pressure on the activity of Amphotericin B. Our findings demonstrate that applied pressure of 50 mmHg is sufficient to enhance the activity. We interpreted the results as supporting the idea that pressure fractures the membrane and promotes the insertion of the polyene.

2.
Membranes (Basel) ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35877884

RESUMEN

This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.

3.
Methods Mol Biol ; 2402: 243-256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34854049

RESUMEN

The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.


Asunto(s)
Membrana Dobles de Lípidos , Ciclodextrinas , Microdominios de Membrana , Microscopía de Fuerza Atómica
4.
Sci Rep ; 11(1): 20946, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686741

RESUMEN

Cell spreading and phagocytosis are notably regulated by small GTPases and GAP proteins. TBC1D10C is a dual inhibitory protein with GAP activity. In immune cells, TBC1D10C is one of the elements regulating lymphocyte activation. However, its specific role in macrophages remains unknown. Here, we show that TBC1D10C engages in functions dependent on the cytoskeleton and plasma membrane reorganization. Using ex vivo and in vitro assays, we found that elimination and overexpression of TBC1D10C modified the cytoskeletal architecture of macrophages by decreasing and increasing the spreading ability of these cells, respectively. In addition, TBC1D10C overexpression contributed to higher phagocytic activity against Burkholderia cenocepacia and to increased cell membrane tension. Furthermore, by performing in vitro and in silico analyses, we identified 27 TBC1D10C-interacting proteins, some of which were functionally classified as protein complexes involved in cytoskeletal dynamics. Interestingly, we identified one unreported TBC1D10C-intrinsically disordered region (IDR) with biological potential at the cytoskeleton level. Our results demonstrate that TBC1D10C shapes macrophage activity by inducing reorganization of the cytoskeleton-plasma membrane in cell spreading and phagocytosis. We anticipate our results will be the basis for further studies focused on TBC1D10C. For example, the specific molecular mechanism in Burkholderia cenocepacia phagocytosis and functional analysis of TBC1D10C-IDR are needed to further understand its role in health and disease.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiología , Fagocitosis/fisiología , Animales , Burkholderia cenocepacia/patogenicidad , Membrana Celular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de Unión al GTP rac1/metabolismo
5.
Basic Clin Pharmacol Toxicol ; 129(1): 72-81, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33900024

RESUMEN

Safety studies are essential in drug development. This study evaluates the safety of Amphotericin A21 (AmB-A21), a derivative of amphotericin B with antifungal therapeutic potential. We performed a chronic toxicity study, a targeted organ study and a dermal irritation test. To evaluate chronic toxicity, 18 male adult rats were treated orally with AmB-21 (2 mg/kg) for 26 weeks. The effects on body-weight and animal health were measured, and haematological, clinical chemistry and histopathological tests were conducted on various organs. In the target organ toxicity study, male adult rats received a daily oral dose of AmB-21 (2 mg/kg) for 6 and 17 weeks; testicle histology and testosterone levels were then evaluated. For the dermal irritation study, AmB-21 (200 and 1000 mg/kg) was placed on the skin of adult male rabbits; macroscopic and microscopic studies, as well as haematological and clinical chemistry tests were then conducted. The chronic toxicity study revealed that AmB-21 caused testicle damage, and the testicle-targeted study showed structural alterations and changes in testosterone levels at 17 weeks. However, these alterations were no longer observed 8 weeks after discontinuation of treatment, and the testes showed very similar characteristics to those in the control group. The dermal irritation study showed skin thickening and reddening in rabbits treated with 2000 mg of AmB-A21 after 14 days of exposure. This same group also showed changes in liver enzymes, renal parameters and platelet levels. Based on our results, we consider AmB-21 to be a potential candidate for safe, long-term antifungal treatment given its reduced side effects.


Asunto(s)
Anfotericina B/toxicidad , Antifúngicos/toxicidad , Administración Oral , Anfotericina B/administración & dosificación , Anfotericina B/análogos & derivados , Animales , Antifúngicos/administración & dosificación , Masculino , Ratas , Pruebas de Toxicidad Crónica
6.
Biochim Biophys Acta Biomembr ; 1863(1): 183467, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871116

RESUMEN

Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-ß-cyclodextrin-mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.


Asunto(s)
Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Esfingolípidos/química
7.
FEBS J ; 287(16): 3449-3471, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31958362

RESUMEN

B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.


Asunto(s)
Linfocitos B/metabolismo , Membrana Celular/metabolismo , Movimiento Celular/genética , Endocitosis/genética , Tetraspaninas/genética , Linfocitos B/ultraestructura , Sistemas CRISPR-Cas , Adhesión Celular/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Confocal , Microscopía Electrónica , Fagocitosis/genética , Estrés Mecánico , Tetraspaninas/metabolismo
8.
Biochim Biophys Acta Biomembr ; 1862(2): 183101, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672540

RESUMEN

The effect of cholesterol and ergosterol on supported lipid bilayers composed of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and egg sphingomyelin (eSM) in a 1/1 M ratio was studied using atomic force microscopy. The addition of ergosterol or cholesterol to these membranes considerably modifies both the structure and the dynamics of the domains present in them. The height of the eSM enriched domains increases with concentration of both sterols, but more markedly with ergosterol. The height of the POPC enriched domains increases with concentration in a similar manner for both sterols. This effect is larger for eSM than for POPC when ergosterol, not cholesterol, is present. Domain coverage increases with both sterols at 5 mol% but decreases at 20 mol% and almost disappears at 40 mol%. The size of the eSM enriched domains decreases with sterol concentration, more markedly with cholesterol. Bilayer rupture forces show that overall stiffness increases with the addition of 5 mol% cholesterol, but only for the eSM enriched domains with ergosterol at the same concentration. At larger sterol concentrations the stiffness of both regions becomes reduced. At 40 mol% sterol concentration, both membranes present the same rupture force value. To gain mechanistic insight into these observations we performed Quantum Mechanical calculations and Molecular Dynamics simulations of the sterol molecules. We found that conformational freedom for the sterol molecules is quite different. This difference might be behind the observed phenomena. Finally, the different action of sterols on membrane properties is related to the sterol-dependent ionophoretic activity of polyene antibiotics.


Asunto(s)
Colesterol/química , Ergosterol/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Microdominios de Membrana/ultraestructura , Fosfatidilcolinas/química , Esfingomielinas/química , Liposomas Unilamelares/química
9.
Biophys Chem ; 257: 106275, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31790909

RESUMEN

We performed molecular dynamics simulations of a lipid bilayer consisting of POPC and cholesterol at temperatures from 283 to 308K and cholesterol concentrations from 0 to 50% mol/mol. The purpose of this study was to look for the existence of structural differences in the region delimited by these parameters and, in particular, in a region where coexistence of liquid disordered and liquid ordered phases has been proposed. Our interest in this range of concentration and temperature responds to the fact that polyene ionophore activity varies considerably along it. Two force fields, CHARMM36 and Slipids, were compared in order to determine the most suitable. Both force fields predict non-monotonic behaviors consistent with the existence of phase transitions. We found the presence of lateral structural heterogeneity, statistical in nature, in some of the bilayers occurring in this range of temperatures and sterol concentrations. This heterogeneity was produced by correlated ordering of the POPC tails and not due to cholesterol enrichment, and lasts for tens of nanoseconds. We relate these observations to the action of polyenes in these membranes.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Microscopía de Fuerza Atómica , Transición de Fase , Temperatura
10.
Biochim Biophys Acta Biomembr ; 1862(2): 183105, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682816

RESUMEN

The aim of this study was to investigate the factors that govern the activity and selectivity of two potent antimicrobial peptides (AMPs) using lipid membrane models of bacterial, erythrocyte and fungal cells. These models were used in calcein liposome leakage experiments to explore peptide efficiency. The AMPs (Pin2 and its variant Pin2[GVG]) showed highest affinity towards the bacterial models in the nanomolar range, followed by the erythrocyte and fungal systems. The presence of sterols modulated the variant's selectivity, while the wild type was unaffected. Liposome leakage experiments with Fluorescein Isothiocyanate-dextran (FITC)-dextran conjugates indicated that pore size depended on peptide concentration. Dynamic Light Scattering revealed peptide aggregation in aqueous solution, and that aggregate size was related to activity. The interacting peptides did not alter liposome size, suggesting pore forming activity rather than detergent activity. Atomic Force Microscopy showed differential membrane absorption, being greater in the bacterial model compared to the mammalian model, and pore-like defects were observed. Electrophysiological assays with the Tip-Dip Patch Clamp method provided evidence of changes in the electrical resistance of the membrane. Membrane potential experiments showed that liposomes were also depolarized in the presence of the peptides. Both peptides increased the Laurdan Generalized Polarization of the bacterial model indicating increased viscosity, on the contrary, no effect was observed with the erythrocyte and the fungal models. Peptide membrane insertion and pore formation was corroborated with Langmuir Pressure-Area isotherms and Brewster Angle Microscopy. Finally, molecular dynamics simulations were used to get an insight into the molecular mechanism of action.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Liposomas Unilamelares/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Bacterias , Membrana Celular/química , Membrana Eritrocítica/efectos de los fármacos , Hongos , Fluidez de la Membrana , Potenciales de la Membrana , Esteroles/química , Viscosidad
11.
Chaos ; 27(5): 053112, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28576106

RESUMEN

In our previous work [J. Membrane Biol. 237, 31 (2010)], we showed the dependence of the time average conductance of Nystatin channels as a function of the applied potential. Specifically, it was observed that greater potential induced enhanced channel activity. This indicates that the supramolecular structure could be stabilized by a large field, possibly by giving a preferential orientation to the monomers. In the present work, we entertain the notion that the process of pore formation in the lipidic membranes has an underlying deterministic component. To verify this hypothesis, experiments were performed under potentio-dynamic conditions, i.e., a square train of pulses of different frequencies (0.05-2 Hz) were applied to a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane having 30 mol. % cholesterol and the presence of 35 µM Amphotericin B. An emergence of a resonant frequency, in the present experiments, is tantamount to observing fingerprints of determinism in the activity of these channels in lipidic membranes.


Asunto(s)
Anfotericina B/farmacología , Electricidad , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Factores de Tiempo
12.
PLoS One ; 11(9): e0162171, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683101

RESUMEN

Amphotericin B is the most potent antimycotic known to date. However due to its large collateral toxicity, its use, although long standing, had been limited. Many attempts have been made to produce derivatives with reduced collateral damage. The molecular mechanism of polyene has also been closely studied for this purpose and understanding it would contribute to the development of safe derivatives. Our study examined polyene action, including chemical synthesis, electrophysiology, pharmacology, toxicology and molecular dynamics. The results were used to support a novel Amphotericin B derivative with increased selectivity: L-histidine methyl ester of Amphotericin B. We found that this derivative has the same form of action as Amphotericin B, i.e. pore formation in the cell membrane. Its reduced dimerization in solution, when compared to Amphotericin B, is at least partially responsible for its increased selectivity. Here we also present the results of preclinical tests, which show that the derivative is just as potent as Amphotericin B and has increased safety.

13.
J Phys Chem A ; 119(12): 2829-33, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25730736

RESUMEN

We performed near edge X-ray absorption spectroscopy (XANES) measurements on the arsenic K-edge of As(III) in solution under acidic and basic conditions, after exposure of the solutions to air. Spectra were recorded for increasing exposure times to the X-rays used to perform absorption spectroscopy measurements. We did not find changes for the solution under acidic conditions, whereas we observed significant changes in the case of solution under alkaline conditions. To interpret these changes, we compared the obtained spectra with XANES spectra of As(III) and As(V) solutions under alkaline conditions, not exposed to air, and used as standards. Principal component fits using these standards indicate an accelerated conversion of As(III) to As(V) due to the exposure to X-rays.


Asunto(s)
Arsenitos/química , Procesos Fotoquímicos , Oxidación-Reducción/efectos de la radiación , Soluciones , Espectroscopía de Absorción de Rayos X , Rayos X
14.
J Phys Chem A ; 118(46): 10967-73, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25340994

RESUMEN

We performed X-ray absorption spectroscopy measurements on the arsenic K-edge of As(III) in solution under acidic conditions. Extended X-ray absorption fine structure (EXAFS) and X-ray near edge structure (XANES) spectra were compared with theoretical calculations which use local atomic structure configurations, either derived from density functional theory (DFT) energy minimization (EM) calculations or based on classical Monte Carlo (MC) simulations, for a As(OH)3 cluster surrounded by water molecules. The nearest arsenic-oxygen distances obtained from the fit of the XAFS spectra are consistent with the distances present in configurations derived from Monte Carlo simulations but not with those obtained from DFT-EM calculations. Calculations of XANES using either DFT-EM or the average configuration obtained from MC simulations do not reproduce the XANES spectra in the vicinity of the absorption edge. However, specific local atomic structural configurations of the As(OH)3 and water molecules, obtained from MC simulations, which show some ordering of water molecules up to 5 Å from the arsenic, reproduce qualitatively the experimental spectra. These results highlight the capability of XANES to yield information about hydration of ions in solution.

15.
J Biol Chem ; 289(21): 14448-57, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24706763

RESUMEN

Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos/farmacología , Algoritmos , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacocinética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Endocitosis/genética , Células HEK293 , Humanos , Cinética , Factor de Apareamiento , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Péptidos/química , Péptidos/farmacocinética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Chem Phys ; 135(5): 054502, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21823707

RESUMEN

A detailed study including ab initio calculations and classic Monte-Carlo simulations of hydroxylamine in the gas and liquid phases is presented. A classical interaction potential for hydroxylamine, which includes polarizability, many-body effects, and intramolecular relaxation, was constructed. The results of the simulation were compared to the available experimental data in order to validate the model. We conclude that liquid hydroxylamine has a multitude of hydrogen bonds leading to a large density where the existence of cis conformers and clusters of these conformers is possible. This explains the occurrence of the classical [R. Nast and I. Z. Foppl, Z. Anorg. Allg. Chem. 263, 310 (1950)] scheme for the molecule's decomposition at room temperature and its large exothermicity and instability.

17.
J Phys Chem B ; 115(16): 4826-33, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21456561

RESUMEN

A nanodrum of an unsupported L-α-phosphatidylcholine bilayer on a ∼7 µm pore was studied using a new experimental setup that permits atomic force microscopy (AFM) in conjunction with the electrical determination of trans-bilayer channels, thus checking its unilamellar character. In these nanodrums, the bilayer engulfs the intruding AFM tip with an adhesion similar to the attraction between two mica supported bilayers brought into close contact. Using this response and the finding of a nonlinear behavior of the Canham-Helfrich elastic model allows for the simultaneous determination of the elastic properties of the membrane. A bending modulus (κ = 1.5 ± 0.6 × 10(-19 )J) and a lateral tension (σ = 1.9 ± 0.7 mN/m) were determined for this case. Most importantly, an adhesion constant (w = 4.6 ± 2.2 mJ/m(2)) was determined from a particular response to deformation of large membrane patches.


Asunto(s)
Membrana Dobles de Lípidos/química , Algoritmos , Elasticidad , Microscopía de Fuerza Atómica , Nanoestructuras/química , Fosfatidilcolinas/química
18.
J Chem Phys ; 127(22): 224507, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18081406

RESUMEN

Monte Carlo simulations of liquid methanol were performed using a refined ab initio derived potential which includes polarizability, nonadditivity, and intramolecular relaxation. The results present good agreement between the energetic and structural properties predicted by the model and those predicted by ab initio calculations of methanol clusters and experimental values of gas and condensed phases. The molecular level picture of methanol shows the existence of both rings and linear polymers in the methanol liquid phase.

19.
Biophys Chem ; 124(3): 243-50, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16765508

RESUMEN

Using a simple model, it is shown that the cost of constraining a hydrated potassium ion inside a narrow pore is smaller than the cost of constraining hydrated sodium or lithium ions in pores of radius around 1.5 A. The opposite is true for pores of radius around 2.5 A. The reason for the selectivity in the first region is that the potassium ion allows for a greater distortion of its hydration shell and can therefore maintain a better coordination, and the reason for the reverse selectivity in the second region is that the smaller ions retain their hydration shells in these pores. This is relevant to the molecular basis of ion selective channels, and since this mechanism does not depend on the molecular details of the pore, it could also operate in all sorts of nanotubes.


Asunto(s)
Canales Iónicos/química , Metales Alcalinos/química , Modelos Químicos , Agua/química , Cationes Monovalentes/química , Litio/química , Nanotubos/química , Porosidad , Potasio/química , Sodio/química
20.
J Chem Phys ; 123(4): 044506, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-16095368

RESUMEN

Coexistence properties for water near the critical point using several ab initio models were calculated using grand canonical Monte Carlo simulations with multiple histogram reweighting techniques. These models, that have proved to yield a good reproduction of the water properties at ambient conditions, perform rather well, improving the performance of a previous ab initio model. It is also shown that bulk geometry and dipole values, predicted by the simulation, can be used and a good approximation obtained with a polarizable rigid water model but not when polarization is excluded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...